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Application of the extended pairing model to heavy isotopes
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Abstract. Relative binding energies (RBEs) within three isotopic chains (100–130Sn, 152–181Yb, and
181–202Pb) have been studied using the exactly solvable extended pairing model (EPM) (F. Pan, V.G.
Gueorguiev, J.P. Draayer, Phys. Rev. Lett. 92, 112503 (2004) (see also these proceedings)). The unique
pairing strength G, which reproduces the experimental RBEs, has been determined. Within EPM, log(G)
is a smooth function of the model space dimension dim(A), as expected for an effective coupling strength.
In particular, for the Pb and Sn isotopes G can be described by a two parameter expression that is inversely
proportional to the dimensionality of the model space, G = α dim(A)−β with β ≈ 1.

PACS. 21.10.Dr Binding energies and masses – 71.10.Li Excited states and pairing interactions in model
systems – 21.60.Cs Shell model

In many applications the infinite dimensionality of the
quantum mechanical Hilbert space is an obstacle; to over-
come it, one has to restrict the model space to a finite
dimensional subspace and construct an appropriate effec-
tive Hamiltonian. This in turn leads from a two-body to
a many-body interaction terms. Nonetheless, the effective
Hamiltonian approach has been very successful and even
pointed to the importance of three-body nuclear inter-
actions [1]. The recently introduced exactly solvable ex-
tended pairing model [2] provides a framework for study
of Hamiltonians with many-body interaction terms:
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Ideally, one should be able to calculate binding energies
and other observables ab initio using the exact nucleon
interaction. However, we are still lacking this capability.
Instead, we use different models for binding energies and
excitation energies. Conventionally, the liquid-drop model
is the zeroth order approximation to the binding ener-
gies while the two-body pairing interaction gives the shell
model corrections. The extended pairing model (EPM) (1)
has terms beyond the standard Nilsson plus pairing Hamil-
tonian; these terms provide an alternative description of
the relative binding energies (RBEs) of neighboring nuclei
within the same valence space. As we will discuss below,

a Conference presenter; e-mail: vesselin@phys.lsu.edu

EPM is well suited to provide description of the RBEs only
within the shell-model since the equations are insensitive
to the binding energy of the core nucleus.
Beside the first two terms, Nilsson plus standard pair-

ing interaction, the Hamiltonian in (1) contains many-
pair interactions which connect configurations that differ
by more than a single pair. Here p is the total number
of single-particle levels considered, εj are single-particle
energies, G is the overall pairing strength (G > 0),
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i↓ are pair creation opera-

tors where c†j creates a fermion in the j-th single-particle
level. The up and down arrows refer to time-reversed
states. Since each Nilsson level can only be occupied by
one pair due to the Pauli Exclusion Principle, the op-
erators B+

i , Bi, and ni form a hard-core boson algebra:
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The pairing vacuum state |j1, · · · , jm〉 is defined so
that: Bi|j1, · · · , jm〉 = 0 for 1 ≤ i ≤ p and i 6= js, where
j1, · · · , jm indicate those m levels that are occupied by
unpaired nucleons. Any state that is occupied by a sin-
gle nucleon is blocked to the hard-core bosons due to the
Pauli principle. The k-pair eigenstates of (1) has the form
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where C
(ζ)
i1i2···ik

are expansion coefficients to be deter-
mined. It is assumed that the level indices j1, · · · , jm
should be excluded from the summation in (2). For sim-
plicity, we focus only on the seniority zero case (m = 0).
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Although Hamiltonian (1) contains many-body inter-
action terms that are non-perturbative, the contribution
of the higher and higher energy configurations is more
and more suppressed due to the structure of the equation
that needs to be solved to determine the eigensystem of

the Hamiltonian (1). The eigensystem E
(ζ)
k and C

(ζ)
i1i2···ik

depend on only one parameter z(ζ), where the quantum
number ζ [2] is understood as the ζ-th solution of (5):
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Due to the space limitations many details and re-
sults of the current application of this exactly solvable
model are omitted, however, a more detailed paper is avail-
able [3]. For the current application the single-particle
energies are calculated using the Nilsson deformed shell
model with parameters from [4]. Experimental BEs are
taken from [5]. Theoretical RBE are calculated relative to
a specific core, 152Yb, 100Sn, and 208Pb for the cases con-
sidered. The RBE of the nucleus next to the core is used
to determine an energy scale for the Nilsson single-particle
energies. For an even number of neutrons, we considered
only pairs of particles (hard bosons). For an odd number
of neutrons, we apply Pauli blocking to the Fermi level of
the last unpaired fermion and considered the remaining
fermions as if they were an even fermion system. The va-
lence model space consists of the neutron single-particle
levels between two closed shells with magic numbers
50–82 and 82–126. By using (3) and (5), values of G are
determined so that the experimental and theoretical RBE
match exactly.
Figure 1 shows results for the 181–202Pb isotopes. The

RBEs are relative to 208Pb which is set to zero, and the
core nucleus is chosen to be 164Pb. For the Yb and Sn
isotopes the core nucleus is also the zero RBE reference
nucleus (100Sn and 152Yb). In this regard, the calcula-
tions for the Pb-isotopes are different because the core
nucleus (164Pb) and the zero binding energy reference nu-
cleus (208Pb) are not the same. One can see from fig. 1
that a quadratic fit to ln(G) as function of A fits the data
well. In this particular case, the pairing strength G(A) for
all 21 nuclei in the range A = 181–202 was also fit to a
simple two-parameter function that is inversely propor-
tional to the dimensionality of the model space dim(A),
namely, by G(A) = α dim(A)−β . Similar results have been
obtained for the Sn-isotopes relative to 132Sn.
In conclusion, we studied RBEs of nuclei in three iso-

topic chains, 100–130Sn, 152–181Yb, and 181–202Pb, within
the recently proposed EPM [2] by using Nilsson single-
particle energies as the input mean-field energies. Overall,
the results suggest that the model is applicable to neigh-
boring heavy nuclei and provides, within a shell-model
approach, an alternative means of calculating RBEs. In
order to achieve that, the pairing strength is allowed to
change as a smooth function of the model space dimen-
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Fig. 1. The solid line gives the theoretical RBEs for the Pb
isotopes relative to the 208Pb nucleus. The insets show the fit
to the values of G that reproduce exactly the experimental
data using a 164Pb core. The lower inset shows the two fitting
functions: log(G(A)) = 382.3502−4.1375A+0.0111A2 for even
values of A and log(G(A)) = 391.6113 − 4.2374A + 0.0114A2

for odd values of A. The upper inset shows a fit to G(A)
that is inversely proportional to the size of the model space,
(dim(A)), that is valid for even as well as odd values of A:
G(A) = 366.7702 dim(A)−0.9972. The Nilsson BE energy is the
lowest energy of the non-interacting system.

sion. It is important to understand that the A-dependence
of G is indirect, since G only depends on the model space
dimension, which by itself is different for different nuclei.
In particular, in all the cases studied ln(G) has a smooth
quadratic behavior for even and odd A with a minimum
in the middle of the model space where the dimensionality
of the space is a maximal; ln(G) for even A and odd A are
very similar which suggests that further detailed analy-
ses may result in the same functional form for even-A and
odd-A isotopes as found in the case of the Pb-isotopes and
Sn-isotopes. It is a non-trivial result that G is inversely
proportional to the space dimension dim in the two cases
considered (Pb-isotopes and Sn-isotopes), which requires
further studies.
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